Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential
نویسندگان
چکیده
Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.
منابع مشابه
The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae.
It has often been suggested that vector-borne parasites alter their vector's feeding behaviour to increase their transmission, but these claims are often based on laboratory studies and lack rigorous testing in a natural situation. We show in this field study that the malaria parasite, Plasmodium falciparum, alters the blood-feeding behaviour of its mosquito vector, Anopheles gambiae s.l., in t...
متن کامل‘Manipulation’ without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites
Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this 'manipulation phenotype' to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yo...
متن کاملOptimization of a Membrane Feeding Assay for Plasmodium vivax Infection in Anopheles albimanus
INTRODUCTION Individuals exposed to malaria infections for a long time develop immune responses capable of blocking Plasmodium transmission to mosquito vectors, potentially limiting parasite spreading in nature. Development of a malaria TB vaccine requires a better understanding of the mechanisms and main effectors responsible for transmission blocking (TB) responses. The lack of an in vitro cu...
متن کاملNF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector Anopheles gambiae
The blood feeding requirements of insects are often exploited by pathogens for their transmission. This is also the case of the protozoan parasites of genus Plasmodium, the causative agents of malaria. Every year malaria claims the lives of a half million people, making its vector, the Anopheles mosquito, the deadliest animal in the world. However, mosquitoes mount powerful immune responses tha...
متن کاملRodent malaria parasites Plasmodium chabaudi and P. vinckei do not increase their rates of gametocytogenesis in response to mosquito probing.
Several vector-borne infectious agents facultatively alter their life history strategies in response to local vector densities. Some evidence suggests that malaria parasites invest more heavily in transmission stage production (gametocytogenesis) when vectors are present. Such a strategy could rapidly increase malaria transmission rates, particularly when adult mosquitoes begin to appear after ...
متن کامل